//source: http://jaxenter.com/tutorial-gpars-making-parallel-systems-groovy-and-java-friendly-43529-2.html //a sample code build process // //source: http://jaxenter.com/tutorial-gpars-making-parallel-systems-groovy-and-java-friendly-43529-2.html //a sample code build process // import static groovyx.gpars.dataflow.Dataflow.operator import groovyx.gpars.dataflow.* def _checkout = { String a -> Thread.sleep( (Long)Math.random() * 5 ); // a bit of random delay for fun println ">checking out...$a" return "checkout-$a" } def _compileSources = { a -> println ">compiling...$a" return "compileSources-$a" } def _generateAPIDoc = { a -> println ">api Docs...$a" return "generateAPIDoc-$a" } def _generateUserDocumentation = { a -> println ">user Docs...$a" return "generateUserDocumentation-$a" } def _packageProject = { project, api, doc -> println ">packaging...$project $api $doc" return "packageProject-$project $api $doc" } def _deploy = { a -> println ">deploying...$a" return (!!Math.round(Math.random())) } /* We need a Broadcaster and Queues to wire elements together */ def checkedOutProjects_B = new DataflowBroadcast() def urls_Q = new DataflowQueue() def compiledProjects_Q = new DataflowQueue() def apiDocs_Q = new DataflowQueue() def userDocs_Q = new DataflowQueue() def packages_Q = new DataflowQueue() def done_Q = new DataflowQueue() /* Here's the composition of individual build steps into a process */ operator(inputs: [urls_Q], outputs: [checkedOutProjects_B], maxForks: 3) { url -> bindAllOutputs _checkout(url) } operator([checkedOutProjects_B.createReadChannel()], [compiledProjects_Q]) { projectRoot -> bindOutput _compileSources(projectRoot) } operator(checkedOutProjects_B.createReadChannel(), apiDocs_Q) { projectRoot -> bindOutput _generateAPIDoc(projectRoot) } operator(checkedOutProjects_B.createReadChannel(), userDocs_Q) { projectRoot -> bindOutput _generateUserDocumentation(projectRoot) } operator([compiledProjects_Q, apiDocs_Q, userDocs_Q], [packages_Q]) { project, api, doc -> bindOutput _packageProject(project, api, doc) } def deployer = operator(packages_Q, done_Q) { packagedProject -> boolean ok = _deploy(packagedProject) println "! Deployed? $ok" bindOutput (ok) } /* add data, start the machine a rollin! */ 5.times { urls_Q << "url #$it" } 5.times { urls_Q << "url #${++it*5}" } /* Now we're set up, and can just wait for the build to finish */ println "==Starting the build process. This line MIGHT NOT be printed out first ...==" //deployer.join() //Wait for the last operator in the network to finish??
Sunday, July 15, 2012
GPars DataflowQueues
Thursday, July 12, 2012
GBench - easy code benchmarking
//source: http://nagaimasato.blogspot.jp/2012/07/gbench-031-released.html //requires Groovy 2.0.0+ @Grab('com.googlecode.gbench:gbench:0.3.1-groovy-2.0') import gbench.BenchmarkBuilder import groovy.transform.CompileStatic int fib(int n) { if (n < 2) return n return fib(n - 1) + fib(n - 2) } @CompileStatic int fib2(int n) { if (n < 2) return n return fib2(n - 1) + fib2(n - 2) } new BenchmarkBuilder().run { int n = 20 "Normal Version" { fib n } "@CompileStatic Version" { fib2 n } }.prettyPrint()
Wednesday, July 11, 2012
Conceptual Map/Reduce Example
//inspiration: http://hamletdarcy.blogspot.ca/2008/01/mapreduce-for-mere-mortals.html // general purpose function def mapReduceFunc = { data, mapFunction, reduceFunction -> def mappedData = data.collect(mapFunction) reduceFunction(mappedData) } // the data Map dictionary = [ abacus: "a device for making arithmetic calculations", arc: "any unbroken part of the circumference of a circle", beaver: "a large, amphibious rodent of the genus Castor" ] // the mapping function impl def startingCharacter = { pair -> pair.value = pair.key[0].toLowerCase() return pair } // the reducing function impl def countCharacters = { dataMap -> Map result = [:] ('a'..'z').each{ result[it] = 0 } dataMap.each { pair -> result[pair.value]++ } return result } // put it all together! def result1 = mapReduceFunc(dictionary, startingCharacter, countCharacters) println result1 //// TWEAK THE I/O FUNCS! //// // the mapping function impl startingCharacter = { pair -> return pair.key[0].toLowerCase() } // the reducing function impl countCharacters = { dataList -> Map result = [:] ('a'..'z').each{ result[it] = 0 } dataList.each { it -> result[it]++ } return result } // put it all together! def result2 = mapReduceFunc(dictionary, startingCharacter, countCharacters) println result2 assert result1 == result2
Subscribe to:
Posts (Atom)